
2. E C Corcoran, J-L Fleche, N Dupin, B Sundman, C Guéneau, Thermodynamic investigations of the uranium-molybdenum-oxygen system by a coupling of density functional theory and CALPHAD methodologies, Calphad 63 (2018) 196-211

12. Irina Roslyakova, Bo Sundman, Holger Dette, Zhang Lijun, and Ingo Steinbach, Modeling of Gibbs energies of pure elements down to 0 K using segmented regression, Calphad 55 (2016) 165-180

17. D Huang, S Liu, Y Du, B Sundman, Modeling of the molar volume of the solution phases in the Al-Cu-Mg system, Calphad 51 (2015) 261-271

23. Bo Sundman, Ursula R Kattner, Mauro Palumbo and Suzana G Fries, OpenCalphad - a free thermodynamic software, in Integrating Materials and Manufacturing Innovation, 4:1 (2015), open access

25. Aning Qin, Rong Wang, Yanu Wang and Bo Sundman, Thermodynamic assessment of the Cd-X (X=Sn, Mn, Fe) systems in CALPHAD, 47 (2014) 83-91

27. Wei Luo, Shuhong Liu, Ying Tang, Ming Yin, Bo Sundman, Yong Du, Philip Nash and Huijin Tao, Experimental investigation and thermodynamic modelling of the Ga-Zr system, in J of Alloys and Compounds, 587 (2014) 497-505

31. P Shi, A Engström and B Sundman, Thermodynamic investigations on materials corrosion in some industrial and environmental processes, in J of Environmental Sciences, 23, supplement 1, (2011) 31-37

33. B Sundman, C Guéneau and N Dupin, Modelling Multiple defects in ionic phases like UO$_{2+x}$ using the Compound Energy Formalism, in Acta Mater. 59 (2011) 6039-6047

41. L Eleno, B Sundman and J Lacaze, Solidification path of Al-Fe-Mn-Si aluminium alloys, 12th Conf on Modelling Casting, Welding and Advanced Solidification Processes, Vancouver Canada (2009) 635-642

42. X-G Lu, B Sundman and J Ågren, Thermodynamic Assessments of the Ni-Pt and Al-Ni-Pt systems. Calphad 33 (2009) 450-456

44. M Hillert, M Selleby and B Sundman, An attempt to correct the quasichemical model, Acta Materialia, 57 (2009) 5237-5244

46. Damien Connetable, Jacques Lacaze, Philippe Maugis and Bo Sundman, A Calphad assessment of Al-C-Fe system with the K carbide modelled as an ordered form of the fcc phase, in Calphad 32 (2008) 361-370

47. Lina Kjellqvist, Malin Selleby and Bo Sundman, Thermodynamic modelling of the Cr-Fe-Ni-O system in Calphad 32 (2008) 577-592

53. Rockfeller Maciel Pecana, Flávio Ferreira, Gilberto Carvalho Coelho, Carlos Angelo Nunes and Bo Sundman, Thermodynamic modeling of the Nb-B system in Intermetallics, 15 (2007) 999-1005

57. T Abe, B Sundman and H Onodera, Thermodynamic assessment of the Cu-Pt system, in J Phase Eq and Diff, 27 (2006) 5-13

65. X G Lu, M Selleby and B Sundman, Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements, in Calphad 29 (2005) 68-89

67. H Ohtani, S Matsumoto, B Sundman, T Sakuma and M Hasebe, Equilibrium between fluorite and pyroclore structures in the ZrO2-Nd2O2 system, in Materials Trans 46 (2005) 1167-1174

70. P F Shi, A Engström, L Höglund, B Sundman and J Ågren, Thermo-Calc and DICTRA enhance materials design and processing, in Materials Science Forum, 475-479 (2005) pp 3339-3346

76. T Abe and B Sundman, A description of the effect of short range ordering in the compound energy formalism, in Calphad 27 (2003) 403-408

82. Qing Chen and Bo Sundman, Computation of Partial Equilibrium with Complete Interstitial and Negligible Substitutional Solute Back Diffusion, in Mat. Trans., 43, Jap Inst of Metals (2002) 551-559

83. C Toffolon, C Servant, J C Gachon and B Sundman, Reassessment of the Nb-Sn system, in J Phase Eq, 23 (2002) 134-139

84. P B Fernandes, G C Coelho, F Ferreira, C A Nunes and B Sundman, Thermodynamic modeling of the Nb-Si system, in Intermetallics 10 (2002) 993-999

94. Qing Chen and Bo Sundman, Modeling of Thermodynamic properties for bcc, fcc, liquid and amorphous Iron, J of Phase Equilibria, 22 (2001) 631-644

95. A Kussoffsky, N Dupin and B Sundman, On the compound energy formalism applied to fcc ordering, in Calphad 25 (2001) 549-566

96. M Hillert and B Sundman, Predicting miscibility gaps in reciprocal liquids, in Calphad 25 (2001) 599-606

133. Bengt Hallstedt, Mats Hillert, Malin Selleby and Bo Sundman, Modelling of Acid and Basic Slags, in Calphad, 18 (1994) 31-38.

156. Mats Hillert and Bo Sundman, Scheil Reaction Scheme by Computer in Calphad, **14** (1990) 111-114.

Thesis

Books and other contributions.

Some published lectures

