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The regular solution

The classic model in Calphad is the substitutional regular solution phase assuming ideal
configurational entropy:

GM =
∑

i

xi
◦Gi + RT

∑

i

xi ln(xi ) +
EGM (1)

where xi is the mole fraction of component i , ◦Gi the Gibbs energy of component i relative to
the reference state for i i.e. the lattice stability.
The excess Gibbs energy EGM is a sum of binary and higher order interactions:

EGM =
∑

i

xi
∑

j>i

xj(Lij +
∑

k>j

xk(Lijk + · · · )) (2)

Lij =
n
∑

ν=0

(xi − xj )
ν · νLij (3)

Lijk = vi
iLijk + vj

jLijk + vk
kLijk (4)

vi = xi + (1− xi − xj − xk)/3 (5)

where the binary and ternary interactions can be composition dependent and νLij and
iLijk

can be linearly T dependent.
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Lijk = vi
iLijk + vj

jLijk + vk
kLijk (4)

vi = xi + (1− xi − xj − xk)/3 (5)

where the binary and ternary interactions can be composition dependent and νLij and
iLijk

can be linearly T dependent.
The weak point in this model is the ideal configurational entropy and the first step to improve
the modeling for solid phases is to include Long Range Ordering (LRO).
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The Compound Energy Formalism (CEF)

The regular solution model cannot be used for solid crystalline phases with many sublattices:

.
A1 A2 A3 A15 B1 B2 L12 L10 D03 D8b
The Compound Energy Formalism (CEF) include LRO in the generic Gibbs energy function for
phase α:

Gα
M = srfGα

M + RT
∑

s

as
∑

i

ysi ln(ysi ) +
EGα

m + physGα
M (6)

srfGα
M =

∑

I

PI (Y ) ◦Gα
I (7)

where srfGM is the surface of reference depending on the Gibbs energies, ◦GI , of the
endmembers I with one constituent in each sublattice relative to the reference state for the
elements. The endmembers are compounds that often can be calculated by DFT.
PI (Y ) is the product of the constituent fractions defined by I and ysi is the fraction of
constituent i in sublattice s. as is the number of sites in sublattice s.
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where srfGM is the surface of reference depending on the Gibbs energies, ◦GI , of the
endmembers I with one constituent in each sublattice relative to the reference state for the
elements. The endmembers are compounds that often can be calculated by DFT.
PI (Y ) is the product of the constituent fractions defined by I and ysi is the fraction of
constituent i in sublattice s. as is the number of sites in sublattice s.
EGα

M
is the excess Gibbs energy with interaction parameters are similar to those used in the

regular model with two or more constituents in one or more sublattices.
physGα

M
is the contribution from particular physical phenomena such as magnetism.

Note the Gibbs energy, GM , is defined per mole formula unit as the model may include
vacancies.

Asta-HumeRothery 5



The reciprocal model

CEF contains many models as subsets and the important one is the reciprocal model which
has two sublattices and two constituents in each. It can be written as

(A,B)a(C,D)c

where A and B are constituents on the first sublattice and C and D are constituents on the
second and a and c are stoichiometric factors. This is the simplest model describing LRO and
it has many interesting properties.

It is called reciprocal because there is a relation between the 4
endmember energies:

∆G = ◦GA:C + ◦GB:D − ( ◦GA:D + ◦GB:C ) (8)
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The reciprocal model

CEF contains many models as subsets and the important one is the reciprocal model which
has two sublattices and two constituents in each. It can be written as

(A,B)a(C,D)c

where A and B are constituents on the first sublattice and C and D are constituents on the
second and a and c are stoichiometric factors. This is the simplest model describing LRO and
it has many interesting properties.

It is called reciprocal because there is a relation between the 4
endmembers:

∆G = ◦GA:C + ◦GB:D − ( ◦GA:D + ◦GB:C ) (8)

With a ∆G 6= 0 as here, drawn by a red arrow, we may have a
miscibility gap. .
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This square represents the constitutional space in the system with
an endmember at each corner. There are 4 excess parameters
representing interactions along the edges of the system and a new
reciprocal parameter LA,B:C,D representing an exchange
interaction on both sublattices.
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The reciprocal interaction parameter in the center turns out to be very important as it can be
used to approximate the contribution from SRO in systems with order/disorder transitions.
CEF models with more sublattices and constituents can always be reduced to a number of
reciprocal subsystems which can give important relations between the endmembers.
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Modeling defects with CEF

The UO2 phase has a C1 structure. Uranium (gray) occupies the FCC lattice and oxygen
(orange) the tetrahedral interstitial sites. Uranium can have +3, +4 and +5 charges, oxygen
always -2. The composition can vary by vacancies on the oxygen sublattice and oxygen on the
octahedral interstitial sites. This gives a CEF model:

(U+3,U+4,U+5)1(O
−2,Va)2(O

−2,Va)1
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Modeling defects with CEF

The UO2 phase has a C1 structure. Uranium (gray) occupies the FCC lattice and oxygen
(orange) the tetrahedral interstitial sites. Uranium can have +3, +4 and +5 charges, oxygen
always -2. The composition can vary by vacancies on the oxygen sublattice and oxygen on the
octahedral interstitial sites. This gives a CEF model:

(U+3,U+4,U+5)1(O
−2,Va)2(O

−2,Va)1

Some of the octahedral interstitial sites for oxygen are shown here as yellow dots.
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The UO2 phase has a C1 structure. Uranium (gray) occupies the FCC lattice and oxygen
(orange) the tetrahedral interstitial sites. Uranium can have +3, +4 and +5 charges, oxygen
always -2. The composition can vary by vacancies on the oxygen sublattice and oxygen on the
octahedral interstitial sites. This gives a CEF model:
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−2,Va)2(O

−2,Va)1

3VV 5VV

4VV

4OV

5OV

4OO

5OO

4VO

5VO

All endmembers (except one) has a net charge.

The shaded areas are electrically neutral

Figures like these two showing the geometrical relation between the endmembers can be useful
to understand the relation between the 12 endmembers (only one of which is electrically
neutral) in order to describe the very extensive thermodynamic data on the C1 phase.
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Modeling defects with CEF

From the 3D prisms on the previous slide one can extract some more useful figures for well
known types of defects:

This reciprocal square represent a Frenkel
defect when an oxygen ion moves to an
interstitial site.
This triangle represent a charge defect
when U+4 = 0.5U+3 + 0.5U+5

4VV+4 4VO+2

4OV 4OO-2

30V-1 5OV+1

4OV

GFrenkel = 0.5( ◦GU+4:Va:O−2 + ◦GU+4:O−2:O−2)− ◦GU+4:O−2:Va (8)

Gcharge = 0.5( ◦GU+3:O−2:Va + ◦GU+5:O−2:Va)−
◦GU+4 :O−2:Va (9)

The figures and equation show how experimental data or DFT calculations of the energy
needed to create a defect can be related to the CEF model parameters.
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The figures and equation show how experimental data or DFT calculations of the energy
needed to create a defect can be related to the CEF model parameters.
This model can handle multiple defects and additions of any other element on the different
sites. Inside a nuclear reactor you essentially have every element in the periodic chart.

Asta-HumeRothery 8



Modeling defects with CEF

From the 3D prisms on the previous slide one can extract some more useful figures for well
known types of defects:

This reciprocal square represent a Frenkel
defect when an oxygen ion moves to an
interstitial site.
This triangle represent a charge defect
when U+4 = 0.5U+3 + 0.5U+5

4VV+4 4VO+2

4OV 4OO-2

30V-1 5OV+1

4OV

GFrenkel = 0.5( ◦GU+4:Va:O−2 + ◦GU+4:O−2:O−2)− ◦GU+4:O−2:Va (8)

Gcharge = 0.5( ◦GU+3:O−2:Va + ◦GU+5:O−2:Va)−
◦GU+4 :O−2:Va (9)

The figures and equation show how experimental data or DFT calculations of the energy
needed to create a defect can be related to the CEF model parameters.
This model can handle multiple defects and additions of any other element on the different
sites. Inside a nuclear reactor you essentially have every element in the periodic chart. During
normal processing one may have some control over this but if there is an accident ...

Asta-HumeRothery 8



Modeling defects with CEF

From the 3D prisms on the previous slide one can extract some more useful figures for well
known types of defects:

This reciprocal square represent a Frenkel
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GFrenkel = 0.5( ◦GU+4:Va:O−2 + ◦GU+4:O−2:O−2)− ◦GU+4:O−2:Va (8)

Gcharge = 0.5( ◦GU+3:O−2:Va + ◦GU+5:O−2:Va)−
◦GU+4 :O−2:Va (9)

The figures and equation show how experimental data or DFT calculations of the energy
needed to create a defect can be related to the CEF model parameters.
This model can handle multiple defects and additions of any other element on the different
sites. Inside a nuclear reactor you essentially have every element in the periodic chart. During
normal processing one may have some control over this but if there is an accident ...
A strength of the Calphad modeling of defects is the consistent method to model structures
with multiple defects and high amount of defects.
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Some steps in the development of thermodynamic models

I was privileged to participate in the development of several models at the MSE department at
KTH as a PhD student for Mats Hillert. In 1981 John Ågren and I wrote the classic paper on
the sublattice model, now known as the Compound Energy Formalism (CEF).
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KTH as a PhD student for Mats Hillert. In 1981 John Ågren and I wrote the classic paper on
the sublattice model, now known as the Compound Energy Formalism (CEF).

At MSE we also modified a model for ferromagnetic transitions by Inden and a introduced
composition dependent Curie T and Bohr magneton number which were essential for the
SGTE unary database. We also developed a model describing short range ordering in liquid
known as the “ionic 2-sublattice ionic liquid model” extending an original model by Temkin.
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composition dependent Curie T and Bohr magneton number which were essential for the
SGTE unary database. We also developed a model describing short range ordering in liquid
known as the “ionic 2-sublattice ionic liquid model” extending an original model by Temkin.

Together with professor Ansara at LTPCM in Grenoble we developed the technique to use
CEF to model phases with order/disorder transitions as the L12/A1 in Al-Ni. This model with
2 sublattices is still used in many commercial databases.
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Together with professor Ansara at LTPCM in Grenoble we developed the technique to use
CEF to model phases with order/disorder transitions as the L12/A1 in Al-Ni. This model with
2 sublattices is still used in many commercial databases.

CEF does not include Short Range Ordering (SRO) but together with Suzana Fries, Nathalie
Dupin, Tetsu Mohri and several others we found an approximate way to include the SRO
contribution from the Cluster Variation Method (CVM), using the reciprocal interaction
parameter. This is described in assessments of Au-Cu, Al-Fe and in an improved assessment of
Al-Ni using CEF with 4 sublattices.
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At MSE we also modified a model for ferromagnetic transitions by Inden and a introduced
composition dependent Curie T and Bohr magneton number which were essential for the
SGTE unary database. We also developed a model describing short range ordering in liquid
known as the “ionic 2-sublattice ionic liquid model” extending an original model by Temkin.

Together with professor Ansara at LTPCM in Grenoble we developed the technique to use
CEF to model phases with order/disorder transitions as the L12/A1 in Al-Ni. This model with
2 sublattices is still used in many commercial databases.

CEF does not include Short Range Ordering (SRO) but together with Suzana Fries, Nathalie
Dupin, Tetsu Mohri and several others we found an approximate way to include the SRO
contribution from the Cluster Variation Method (CVM), using the reciprocal interaction
parameter. This is described in assessments of Au-Cu, Al-Fe and in an improved assessment of
Al-Ni using CEF with 4 sublattices.

CVM developed by Kikuchi is the best model for SRO in phases with no LRO but CVM
requires so many clusters that it is still too slow to be used for simulations for
multi-component materials. For phases with LRO the contribution from SRO is small and can
easily be included in the basic CEF model.
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The disordered fraction set and EBEF

A phase with many sublattices and constituents will have many endmembers, a σ phase with 5
sublattices and 10 components has 105 endmembers. This is far less than the number of
clusters using a CVM based model but anyway it is simply too many.
Commercial databases normally use only 3 sublattices for TCP phases such as σ. But a 10
component system with many TCP phases will anyway have to handle several 100 fraction
variables to calculate the equilibrium.
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A phase with many sublattices and constituents will have many endmembers, a σ phase with 5
sublattices and 10 components has 105 endmembers. This is far less than the number of
clusters using a CVM based model but anyway it is simply too many.
Commercial databases normally use only 3 sublattices for TCP phases such as σ. But a 10
component system with many TCP phases will anyway have to handle several 100 fraction
variables to calculate the equilibrium.

However, only a few of all possible endmembers in a TCP phase are important to describe the
stable range of the phase because endmembers with a positive energy relative to a
“mechanical mixture” of the components can be ignored. This has lead to the idea to
introduce a disordered fraction set for phases with many sublattices:

(A,B,C,D,E,F)2(A,B,C,D,E,F)4(A,B,C,D,E,F)8(A,B,C,D,E,F)8(A,B,C,D,E,F)8
with the disordered fraction set

(A,B,C,D,E,F)30
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The configurational entropy is calculated using sublattices: RT
∑

s as
∑

i ysi ln(ysi )

The surface of reference, srfG , use the disordered set with the mole fractions xA =
∑

s as ys,A
∑

s as
.
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Only endmembers in the sublattice model with a Gibbs energy below the Gibbs energy surface
defined by these two terms are needed to describe all possible stable states (the convex hull)
of this phase.
Configurent independent interactions can also be introduced in the disordered fraction set.
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The disordered fraction set and EBEF

A phase with many sublattices and constituents will have many endmembers, a σ phase with 5
sublattices and 10 components has 105 endmembers. This is far less than the number of
clusters using a CVM based model but anyway it is simply too many.
Commercial databases normally use only 3 sublattices for TCP phases such as σ. But a 10
component system with many TCP phases will anyway have to handle several 100 fraction
variables to calculate the equilibrium.

Phases with order/disorder transitions like FCC with the ordered superstructures L12, L10
require 4 sublattice but many of the endmembers have identical values, for example:
◦GA:A:A:B = ◦GA:A:B:A = ◦GA:B:A:A = ◦GB:A:A:A

Considering this and including a disordered fraction set when designing the data structure for
storing the parameters for such models simplifies database management and can speed up
calculations.
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The disordered fraction set and EBEF

A phase with many sublattices and constituents will have many endmembers, a σ phase with 5
sublattices and 10 components has 105 endmembers. This is far less than the number of
clusters using a CVM based model but anyway it is simply too many.
Commercial databases normally use only 3 sublattices for TCP phases such as σ. But a 10
component system with many TCP phases will anyway have to handle several 100 fraction
variables to calculate the equilibrium.

A recent extension of CEF is to assume that the energy of the bond energy between atoms in
different sublattices is independent of the constituents on the other sublattices i.e. using
endmembers such as ◦Gσ

A:B:∗:∗:∗,
◦Gσ

∗:A:B:∗:∗ etc.

This Effective Bond Energy Formalism (EBEF) proposed by Nathalie Dupin can reduce the
number of endmember parameters and seems to give better extrapolations to multi-component
systems. The diagrams below are for the Mo-Ni-Re system at 500, 1500 and 2500 K where the
stability range of the σ phase has a complex shape in competition with many other phases.
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 T=500, P=100000, N=1, X(NI)=Y,

SIGMA

HCP−A3−AUTO#2

CHI

BCC−A2

FCC−A1

MONI−DELTA

SIGMA−AUTO#2

monovariant

tie−line

  1.00

  1.00

X(
*,N

I)

OC

Mo X(*,RE)

OpenCalphad   5.034 :  2019−03−08 : with GNUPLOT Map 15 fig 2: BEF model Mo−Ni−Re isotherm 1500 K 

 T=1500, P=100000, N=1, X(NI)=Y,

FCC−A1

CHI

BCC−A2

MONI−DELTA

SIGMA

HCP−A3−AUTO#2

monovariant

tie−line

  1.00

  1.00
X(

*,N
I)

OC

Mo X(*,RE)

OpenCalphad   5.034 :  2019−03−08 : with GNUPLOT Map 15 fig 1: BEF model Mo−Ni−Re isotherm 2500 K 

 T=2500, P=100000, N=1, X(NI)=Y,

LIQUID

BCC−A2

HCP−A3

SIGMA

monovariant

tie−line
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New thermodynamic models

Do we have the models we need
or those we deserve?
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Although there is now a large repertoire of models for thermodynamics the
quest for new models is not finished. There is usually no problem to fit known
experimental and theoretical data in binary and ternary systems, the main
challenge for the models is to provide reliable extrapolations to
multi-component systems.
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New thermodynamic models

Do we have the models we need
or those we deserve?

Although there is now a large repertoire of models for thermodynamics the
quest for new models is not finished. There is usually no problem to fit known
experimental and theoretical data in binary and ternary systems, the main
challenge for the models is to provide reliable extrapolations to
multi-component systems.

For liquids there is no really satisfactory models for short range ordering, only 3
very approximate models: the associate model, the modified quasi-chemical
model and the ionic 2-sublattice model.

High pressure data (several GPa) is also difficult to model. Partially because one
has to use the Helmholtz energy rather than the Gibbs energy.
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Data structures

◮ Structuring the static thermodynamic data

◮ Model parameter identifiers

◮ Structuring the dynamic equilibrium data
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Data structures

◮ Structuring the static thermodynamic data

◮ Model parameter identifiers

◮ Structuring the dynamic equilibrium data

Algorithms + Data Structures = Programs

To use the thermodynamic models to calculate equilibria and thermodynamic properties we
must implement then in a computer software.
Great care must be taken to handle multi-component systems and many different kinds of
external conditions in an efficient way.

Asta-HumeRothery 12



Static and dynamic data

The data for elements, species and model
parameters are independent on the external
conditions on the system
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Static and dynamic data

The data for elements, species and model
parameters are independent on the external
conditions on the system

Dynamic data

The amount and constitution of the phases
vary with the external conditions like
temperature and overall composition and are
stored in the equilibrium record.

Asta-HumeRothery 13



Static and dynamic data

The data for elements, species and model
parameters are independent on the external
conditions on the system

Dynamic data

In the dynamic data structure each equilibrium
record has a separate set of conditions and
results and they can be calculated in parallel.
.

Asta-HumeRothery 13



Static data, storing parameters for a phase (A,D)a(B,C)b

G TC G

L L

L

This data structure is a binary tree representing the Gibbs energy, G, and TC:

G = y1,Ay2,B(
◦GA:B + y2,C(LA:B,C + y1,DLA,D:B,C) + y1,DLA,D:B) + y1,Ay2,C

◦GA:C

TC = y1,Ay2,B
◦TCA:B

where the constituent fractions, ysi are stored in the dynamic data structure
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Static data, storing parameters for a phase (A,D)a(B,C)b

The data structure can also be considered as a method to handle a sparse multi-dimensional
matrix because the number of possible parameters can be very large in a multi-component
phase with many sublattices.
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Model property parameter identifiers

The method to describe the Gibbs energy used in the thermodynamic model can be extended
to other properties which depend on the phase, the composition and T and P. In the OC data
structure it is possible for a user to add parameters for many other phase dependent
properties, also for properties can be useful for simulations, like atomic mobility, electric
resistance, viscosity etc.
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Model property parameter identifiers

The method to describe the Gibbs energy used in the thermodynamic model can be extended
to other properties which depend on the phase, the composition and T and P. In the OC data
structure it is possible for a user to add parameters for many other phase dependent
properties, also for properties can be useful for simulations, like atomic mobility, electric
resistance, viscosity etc.
Indx Ident T P Specification Status Note

1 G T P 0 Energy

2 TC - P 2 Combined Curie/Neel T

3 BMAG - - 1 Average Bohr magneton numb

4 CTA - P 2 Curie temperature

5 NTA - P 2 Neel temperature

6 IBM - P &<constituent#sublattice>; 12 Individual Bohr magneton num

7 THET - P 2 Debye or Einstein temp

8 V0 - - 1 Volume at T0, P0

9 VA T - 4 Thermal expansion

10 VB T P 0 Bulk modulus

11 G2 T P 0 Liquid two state parameter

12 MQ T P &<constituent#sublattice>; 10 Mobility activation energy

13 MF T P &<constituent#sublattice>; 10 RT*ln(mobility freq.fact.)

14 MG T P &<constituent#sublattice>; 10 Magnetic mobility factor

15 THT2 - P 2 Smooth step function T

16 DCP2 - P 2 Smooth step function value

17 VISC T P 0 Viscosity

18 LPX T P 0 Lattice param X axis

19 LPY T P 0 Lattice param Y axis

20 LPZ T P 0 Lattice param Z axis

21 LPTH T P 0 Lattice angle TH

22 EC11 T P 0 Elastic const C11

23 EC12 T P 0 Elastic const C12

24 EC44 T P 0 Elastic const C44

26 UQT T P &<constituent#sublattice>; 10 UNIQUAC residual parameter

25 RHO T P 0 Electric resistivity

26 LAMB T P 0 Thermal conductivity

27 TSCH - P 2 Schottky anomality T

28 CSCH - P 2 Schottky anomality Cp/R.
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Dynamic data: Inside the equilibrium record 1

The equilibrium record contain all data that depend on the current set of conditions. This
cupboard will be used as illustration.
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Dynamic data: Inside the equilibrium record 1

There are many of them so one can
calculate equilibria in parallel. Each
of them has a link to the same static
data structure with the data for
elements, phases and model
parameters.
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Dynamic data: Inside the equilibrium record 2
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Dynamic data: Inside the equilibrium record 2

Name and index of equilibrium

.

Asta-HumeRothery 17



Dynamic data: Inside the equilibrium record 2

Pointer to list with one condition record

.

Condition 1: T=1000
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Dynamic data: Inside the equilibrium record 2

Pointer to list with more condition records

.

Condition 1: T=1000

Condition 2: P=100000

Condition 3: N=1

Condition 4: w%(cr)=17

Asta-HumeRothery 17



Dynamic data: Inside the equilibrium record 2

Pointer to list with experimental data used for assessments.

.
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Dynamic data: Inside the equilibrium record 2

Current T and P and convergence criteria

.
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Dynamic data: Inside the equilibrium record 2

Values of model parameters and TP functions for the values
of T and P in this equilibrium. The actual expressions for
these are stored in the static data structure.

.

Asta-HumeRothery 17



Dynamic data: Inside the equilibrium record 2

Values of state variable functions which depend on the result
of a calculation. These expressions are also stored in the
static data structure.

.
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Dynamic data: Inside the equilibrium record 2

Woops ... a secret drawer (undocumented)

.
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Dynamic data: Inside the equilibrium record 2

The phase varres record array:

◮ One entry for each phase and composition set
◮ Index to static phase record, phase tuple, status etc.
◮ Amount formula units of the phase, ℵα

◮ Moles of atoms per formula unit of phase
◮ The number of sites on each sublattices
◮ A possible disordered fraction set record
◮ Array with constituent fractions yα

si
◮ Net charge, driving force
◮ Number of properties, array with property type indices

◮ Array with G , ∂G
∂T

, ∂G
∂P

, ∂2G
∂T 2 etc. and other properties

◮ Array with ∂G
∂ysi

, ∂2G
∂ysi∂T

and ∂2G
∂ysi∂P

◮ Array with ∂2G
∂ysi∂ytj
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Calculating the thermodynamic equilibrium

◮ The equilibrium algorithm

◮ Finding the global equilibrium

◮ The second derivative of Gibbs energy

◮ Memory leaks and other problems

Asta-HumeRothery 18



Calculating the thermodynamic equilibrium

The algorithm for minimization that is implemented in OC was proposed by Hillert (1981). It
uses Lagrange multipliers to minimize the total Gibbs energy with constraints:

G(T ,P,N) =
∑

α

ℵ
α
G

α
M (T ,P,Y ) (10)

0 = NA −

∑

α

ℵ
α
M

α
A

(11)

0 =
∑

i

y
α
si − 1 (12)

where ℵα is the amount of phase α, NA is the total amount of component A, Mα
A

is the
amount of component A and yα

si
is the fraction of constituent i on sublattice s in phase α.
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Calculating the thermodynamic equilibrium

The algorithm for minimization that is implemented in OC was proposed by Hillert (1981). It
uses Lagrange multipliers to minimize the total Gibbs energy with constraints:

G(T ,P,N) =
∑

α

ℵ
α
G

α
M (T ,P,Y ) (10)

0 = NA −

∑

α

ℵ
α
M

α
A

(11)

0 =
∑

i

y
α
si − 1 (12)

where ℵα is the amount of phase α, NA is the total amount of component A, Mα
A

is the
amount of component A and yα

si
is the fraction of constituent i on sublattice s in phase α.

Adding the constraints to the Gibbs energy with multipliers gives:

L =
∑

α

ℵαGα
M (T ,P,Y ) +

∑

A

(NA −
∑

α

ℵαMα
A)µA +

∑

α

∑

s

ηαs (
∑

i

yα
si − 1) (13)

where µA and ηαs the are multipliers for the constraints. L has the same minimum as G when
the constraints are fulfilled.
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Calculating the thermodynamic equilibrium

The algorithm for minimization that is implemented in OC was proposed by Hillert (1981). It
uses Lagrange multipliers to minimize the total Gibbs energy with constraints:

G(T ,P,N) =
∑

α

ℵ
α
G

α
M (T ,P,Y ) (10)

0 = NA −

∑

α

ℵ
α
M

α
A

(11)

0 =
∑

i

y
α
si − 1 (12)

where ℵα is the amount of phase α, NA is the total amount of component A, Mα
A

is the
amount of component A and yα

si
is the fraction of constituent i on sublattice s in phase α.

Adding the constraints to the Gibbs energy with multipliers gives:

L =
∑

α

ℵαGα
M (T ,P,Y ) +

∑

A

(NA −
∑

α

ℵαMα
A)µA +

∑

α

∑

s

ηαs (
∑

i

yα
si − 1) (13)

where µA and ηαs the are multipliers for the constraints. L has the same minimum as G when
the constraints are fulfilled.
At equilibrium all partial derivatives must be zero and from the derivative of the Lagrange
function with respect to ℵα we get:

∂L

∂ℵα
= Gα

M −
∑

A

Mα
AµA = 0 (14)

The multiplier µA can thus be identified as the chemical potential of A.
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables.
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)

The external conditions concerning extensive variables such as the amount of a component A,
the T ,P, the enthalpy, etc. A condition on the amount of component B, ÑB:
NB =

∑

α ℵαMα
B = ÑB, can be formulated as a differential:

∆NB =
∑

α

ℵα
∑

si

∂Mα
B

∂yα
si

∆yα
si +

∑

α

Mα
B∆ℵα = NB − ÑB (16)

where for phase α the ∆yα
si

are the changes in the constituent fractions and ∆ℵα is the phase
amount change.

.
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)

The external conditions concerning extensive variables such as the amount of a component A,
the T ,P, the enthalpy, etc. A condition on the amount of component B, ÑB:
NB =

∑

α ℵαMα
B = ÑB, can be formulated as a differential:

∆NB =
∑

α

ℵα
∑

si

∂Mα
B

∂yα
si

∆yα
si +

∑

α

Mα
B∆ℵα = NB − ÑB (16)

where for phase α the ∆yα
si are the changes in the constituent fractions and ∆ℵα is the phase

amount change.
Eq. 16 is transformed by replacing ∆yα

si
with a linear expression of the potentials, using an

inverted phase matrix, eα
ij
, derived from the Lagrange equation (here including variable T ):

∑

α

ℵα
∑

si

∂Mα
B

∂ysi





∑

tj

∑

A

∂Mα
A

∂ytj
eαij µA −

∑

tj

∂2Gα
M

∂ytj∂T
eαij ∆T −

∑

tj

∂Gα
M

∂ytj
eαij





+
∑

α

Mα
A∆ℵα = NA − ÑA

where eα
ij

depends on the second derivatives of Gα
M
:

∂2Gα
M

∂ysi∂ytj
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)

The external conditions concerning extensive variables such as the amount of a component A,
the T ,P, the enthalpy, etc. A condition on the amount of component B, ÑB:
NB =

∑

α ℵαMα
B = ÑB, can be formulated as a differential:

∆NB =
∑

α

ℵα
∑

si

∂Mα
B

∂yα
si

∆yα
si +

∑

α

Mα
B∆ℵα = NB − ÑB (16)

where for phase α the ∆yα
si

are the changes in the constituent fractions and ∆ℵα is the phase
amount change.
Eq. 16 is transformed by replacing ∆yα

si with a linear expression of the potentials, using an
inverted phase matrix, eαij , derived from the Lagrange equation (here including variable T ):

∑

α

ℵα
∑

si

∂Mα
B

∂ysi





∑

tj

∑

A

∂Mα
A

∂ytj
eαij µA −

∑

tj

∂2Gα
M

∂ytj∂T
eαij ∆T −

∑

tj

∂Gα
M

∂ytj
eαij





+
∑

α

Mα
A∆ℵα = NA − ÑA

highlighting the change.
.
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)

The external conditions concerning extensive variables such as the amount of a component A,
the T ,P, the enthalpy, etc. A condition on the amount of component B, ÑB:
NB =

∑

α ℵαMα
B = ÑB, can be formulated as a differential:

∆NB =
∑

α

ℵα
∑

si

∂Mα
B

∂yα
si

∆yα
si +

∑

α

Mα
B∆ℵα = NB − ÑB (16)

where for phase α the ∆yα
si

are the changes in the constituent fractions and ∆ℵα is the phase
amount change.
Eq. 16 is transformed by replacing ∆yα

si with a linear expression of the potentials, using an
inverted phase matrix, eαij , derived from the Lagrange equation (here including variable T ):

∑

α

ℵα
∑

si

∂Mα
B

∂ysi





∑

tj

∑

A

∂Mα
A

∂ytj
eαij µA −

∑

tj

∂2Gα
M

∂ytj∂T
eαij ∆T −

∑

tj

∂Gα
M

∂ytj
eαij





+
∑

α

Mα
A∆ℵα = NA − ÑA

the potential variables replacing the ∆yα
si .

.
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Calculating the thermodynamic equilibrium

The equilibrium matrix is a system of equations based on the external conditions with chemical
potentials and the amounts and compositions of the stable phases as variables. There is one
equation for each stable phase to ensure they are on the same Gibbs energy plane:

∑

A

Mα
AµA = Gα

M (15)

The external conditions concerning extensive variables such as the amount of a component A,
the T ,P, the enthalpy, etc. A condition on the amount of component B, ÑB:
NB =

∑

α ℵαMα
B = ÑB, can be formulated as a differential:

∆NB =
∑

α

ℵα
∑

si

∂Mα
B

∂yα
si

∆yα
si +

∑

α

Mα
B∆ℵα = NB − ÑB (16)

where for phase α the ∆yα
si

are the changes in the constituent fractions and ∆ℵα is the phase
amount change.
Eq. 16 is transformed by replacing ∆yα

si with a linear expression of the potentials, using an
inverted phase matrix, eαij , derived from the Lagrange equation (here including variable T ):

∑

α

ℵα
∑

si

∂Mα
B

∂ysi





∑

tj

∑

A

∂Mα
A

∂ytj
eαij µA −

∑

tj

∂2Gα
M

∂ytj∂T
eαij ∆T −

∑

tj

∂Gα
M

∂ytj
eαij





+
∑

α

Mα
A∆ℵα = NA − ÑA

the inverted phase matrix elements are used here.
.

Asta-HumeRothery 20



An example of the equilibrium matrix

For a binary A-B system (at known T ,P) with two stable phases we have 4 unknown: µA, µB

and the change in phase amounts ∆ℵα,∆ℵβ :

































Mα
A

Mα
B

0 0

M
β
A

M
β
B

0 0

∑

γ ℵγ ∑

i

∂M
γ
A

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

∑

γ ℵγ ∑

i

∂M
γ
A

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

Mα
A

M
β
A

∑

γ ℵγ ∑

i

∂M
γ
B

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

∑

γ ℵγ ∑

i

∂M
γ
B

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

Mα
B

M
β
B























































µA

µB

∆ℵα

∆ℵβ























=





































Gα
M

G
β
M

∑

γ ℵγ ∑

i
∑

j

∂M
γ
A

∂yi

∂G
γ
M

∂yj
e
γ
ij

+ NA − ÑA

∑

γ ℵγ ∑

i
∑

j

∂M
γ
B

∂yi

∂G
γ
M

∂yj
e
γ
ij

+ NB − ÑB




































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An example of the equilibrium matrix

For a binary A-B system (at known T ,P) with two stable phases we have 4 unknown: µA, µB

and the change in phase amounts ∆ℵα,∆ℵβ :

































Mα
A

Mα
B

0 0

M
β
A

M
β
B

0 0

∑

γ ℵγ ∑

i

∂M
γ
A

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

∑

γ ℵγ ∑

i

∂M
γ
A

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

Mα
A

M
β
A

∑

γ ℵγ ∑

i

∂M
γ
B

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

∑

γ ℵγ ∑

i

∂M
γ
B

∂yi

∑

C

∑

j

∂M
γ
C

∂yj
e
γ
ij

Mα
B

M
β
B























































µA

µB

∆ℵα

∆ℵβ























=





































Gα
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β
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∑

γ ℵγ ∑
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j

∂M
γ
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γ
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∂yj
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γ
ij
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∑

γ ℵγ ∑

i
∑

j

∂M
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B
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∂G
γ
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∂yj
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γ
ij
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



































Even in multi-component systems with many constituent fractions we have just one µA for
each component and one ∆ℵα for each stable phase.
Without inverting the phase matrix this we must include constituent fractions for all stable
phases and it becomes much larger and has to be solved using non-linear methods.
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An example of the equilibrium matrix

For a binary A-B system (at known T ,P) with two stable phases we have 4 unknown: µA, µB

and the change in phase amounts ∆ℵα,∆ℵβ :
































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A
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M
β
A

M
β
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i

∂M
γ
A

∂yi

∑
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∂yj
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∑
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∂yj
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β
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γ ℵγ ∑
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∂M
γ
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∂yi

∑

C

∑

j

∂M
γ
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∂yj
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γ
ij

∑

γ ℵγ ∑
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∂M
γ
B

∂yi

∑
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∑
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∂M
γ
C

∂yj
e
γ
ij

Mα
B

M
β
B
































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














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∆ℵβ























=




































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G
β
M

∑

γ ℵγ ∑
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∑

j

∂M
γ
A

∂yi

∂G
γ
M

∂yj
e
γ
ij

+ NA − ÑA

∑

γ ℵγ ∑

i
∑

j

∂M
γ
B

∂yi

∂G
γ
M

∂yj
e
γ
ij

+ NB − ÑB





































After solving this linear system of equations we have new values of the chemical potentials and
phase amounts and we can obtain new phase constitutions.
We can iterate until the changes in chemical potentials and fractions become less than some
convergence criteria.
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An example of the equilibrium matrix

For a binary A-B system (at known T ,P) with two stable phases we have 4 unknown: µA, µB

and the change in phase amounts ∆ℵα,∆ℵβ :
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


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




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∂yj
e
γ
ij

Mα
B

M
β
B










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












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


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∆ℵβ
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


















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


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








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∂yj
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



































If the amount of a stable phase becomes negative it means it is no longer stable and can be
removed. For the metastable phases we update the constitutions and calculate the driving
force and if this is positive the phase is added to the set of stable phases.
This algorithm allows a very flexible set of external conditions, such as a phase must be stable,
the composition of a phase is known or an expression using two or more state variables.
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An example of the equilibrium matrix

For a binary A-B system (at known T ,P) with two stable phases we have 4 unknown: µA, µB

and the change in phase amounts ∆ℵα,∆ℵβ :
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




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




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




















































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µB

∆ℵα

∆ℵβ























=


































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∂yj
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γ
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∂yj
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ij
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



































The only drawback is that calculating the inverted phase matrix requires that all second
derivatives of the molar Gibbs energy must be implemented analytically.
But there are also advantages to have second derivatives of G
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The second derivative

Implementation of a new model can be rather complicated as it requires writing code not only
the equation for the molar Gibbs energy but also the first and second derivatives of the Gibbs
energy.
But there are advantages having second derivatives as these makes it possible to calculate the
stability matrix to check if we are inside a miscibility gap.
In the OC there is also a possibility to calculate “dot derivatives” which represent other
properties that those modeled. For example:

H.T = CP =

(

∂H

∂T

)

P,si

= −T

(

∂2G

∂T 2

)

P,Ni

= −T

[

(

∂2GM

∂T 2

)

P,ysi

+ · · ·

]

(17)

where the · · · include all other second derivatives of GM because even if all Ni are constant
the constituent fractions ysi are not.
H.T is calculated as the heat capacity of a system for the current set of conditions. This
calculation include contributions to the heat capacity from variation in constitution like
speciation in gases or SRO in crystalline phases.
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The second derivative

Implementation of a new model can be rather complicated as it requires writing code not only
the equation for the molar Gibbs energy but also the first and second derivatives of the Gibbs
energy.
But there are advantages having second derivatives as these makes it possible to calculate the
stability matrix to check if we are inside a miscibility gap.
In the OC there is also a possibility to calculate “dot derivatives” which represent other
properties that those modeled. For example:

H.T = CP =

(

∂H

∂T

)

P,si

= −T

(

∂2G

∂T 2

)

P,Ni

= −T

[

(

∂2GM

∂T 2

)

P,ysi

+ · · ·

]

(17)

where the · · · include all other second derivatives of GM because even if all Ni are constant
the constituent fractions ysi are not.
H.T is calculated as the heat capacity of a system for the current set of conditions. This
calculation include contributions to the heat capacity from variation in constitution like
speciation in gases or SRO in crystalline phases.

For kinetic simulations the second derivatives of the Gibbs energy are also useful as they are
needed to convert atomic mobilities to diffusion coefficients, to calculate gradients and much
more.
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Calculating the global equilibrium

Any iterative algorithm must have a reasonable set of starting values, i.e. a guess of the stable
phases and and their constitutions.
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Calculating the global equilibrium

Any iterative algorithm must have a reasonable set of starting values, i.e. a guess of the stable
phases and and their constitutions.

◮ To ensure the calculated equilibrium is a global minimum the OC software has an initial
step which calculates the Gibbs energy of all phases over a grid of compositions.

◮ These are treated as stoichiometric phases in a preliminary minimization to find a set of
gridpoints representing a global minimum and fulfilling the mass balance equations. This
set will have one gridpoint per component.

◮ This set of gridpoints for the minimum is then used as initial guess of the stable phases
and their constitutions are inserted as start values for the iterative algorithm.
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Calculating the global equilibrium

Any iterative algorithm must have a reasonable set of starting values, i.e. a guess of the stable
phases and and their constitutions.

◮ To ensure the calculated equilibrium is a global minimum the OC software has an initial
step which calculates the Gibbs energy of all phases over a grid of compositions.

◮ These are treated as stoichiometric phases in a preliminary minimization to find a set of
gridpoints representing a global minimum and fulfilling the mass balance equations. This
set will have one gridpoint per component.

◮ This set of gridpoints for the minimum is then used as initial guess of the stable phases
and their constitutions are inserted as start values for the iterative algorithm.

The grid minimizer will automatically find miscibility gaps as the same phase may have several
gridpoints in this set.
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Grid minimizer, an example

In the Fe-Mo system at 1500 K the grid minimizer calculates a number of points along the
Gibbs energy curves of the different phases.

500

1000

1500

2000

2500

3000

  T
/K

0 0.2 0.4 0.6 0.8 1.0

  Mole fraction Mo

liquid

bcc

La
ve

s

R

µ

σ
bcc

-6.6

-6.4

-6.2

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0

-4.8

-4.6

-4.4

  G
/R

/T
0 0.2 0.4 0.6 0.8 1.0

  X(MO)

bcc

fcc

liquid

hcp

sigma

mu
R

P

MoNi

chi

bcc
fcc

liquid

hcp

Asta-HumeRothery 24



Grid minimizer, an example

In the Fe-Mo system at 1500 K the grid minimizer calculates a number of points along the
Gibbs energy curves of the different phases.
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The gridpoints are treated as individual stoichiometric phases by the grid minimizer.
NOTE the scale is changed!
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Grid minimizer, an example

In the Fe-Mo system at 1500 K the grid minimizer calculates a number of points along the
Gibbs energy curves of the different phases.
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Depending on the overall composition the gridminimizer will find two points on the “convex
hull” of gridpoints.
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Grid minimizer, an example

In the Fe-Mo system at 1500 K the grid minimizer calculates a number of points along the
Gibbs energy curves of the different phases.
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These represent a composition of a solution phase and are used as start points in the iterative
algorithm.
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Parallelization: Memory leaks and other problems

The use of records and allocatable data structures simplifies many things developing software
and helps you to keep things in good order.
But it also creates new problems because if a pointer is changed by mistake you may not be
able to find all your data.
There are also problems with “memory leaks” which means that memory used at the last
iteration was not returned correctly to the memory pool. This means the program may crash
during a large simulation due to lack of memory. The valgrind software has been a great help
to eliminate this.
I had some experience using an Object Oriented language called SIMULA some 40 years ago.
In SIMULA there was an automatic “garbage collector” which returned unused memory to the
memory pool. But an automatic garbage collector slows down the calculations.
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Phase diagrams

◮ Phase diagram and Gibbs energy surfaces

◮ Following lines

◮ Other ways to draw a phase diagram
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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This is an assessed phase diagram using also experimental phase diagram data so using only
DFT data is not always possible. But that is not my main point.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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The intermetallic phases has been modeled with the crystallographically correct number of
sublattices. In the diagram to the right the fraction of different constituents on the 4 different
sublattices in the CHI phase at 2000 K are plotted as functions of the composition. The CHI
phase is stable ony in a small composition range.
(Re,W)1(Re,W)4(Re,W)12(Re,W)12

But this is not my main point either.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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The diagram to the right shows the Gibbs energy curves for all phases at 2600 K using HCP
as reference state for Re and BCC for W. There is one curve for each TCP phase included in
the DFT calculations: A15, C14, C15, C36, ξ, µ, σ.
The phase diagram has only the stable set of phases given by the lowest Gibbs energy, the
“convex hull”.
Many of the Gibbs energy curves are very close and small uncertainties in the values of the
DFT calculations are significant for the stability.
The metastable ranges of the Gibbs energy curves are also important because changing T or
adding a third element will change these curves. We need to know how a metastable phase
behaves in the binary.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
OC

T

X(*,W)

OpenCalphad   5.030 :  2019−01−15 : with GNUPLOT 
 T=Y,  P=100000, N=1

X(A15,W)
X(BCC,W)
X(CHI,W)

X(HCP,W)
X(SIGMA,W)

−20000

−10000

 0

 10000

 20000

 30000

 40000

 50000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
OC

G
M

(*
)

X(W)

OpenCalphad   5.030 :  2019−01−15 : with GNUPLOT 
 T=500, P=100000, N=1, X(W)=X,

GM(A15)
GM(BCC)
GM(C14)
GM(C15)
GM(C36)
GM(CHI)

GM(FCC)
GM(HCP)

GM(MU)
GM(SIGMA)

Here are the curves at 500 K. The points in both diagrams indicate the solubility limits of the
stable phases in the phase diagram. At this T we have just the HCP and BCC phases stable
with small solubilities.

The Gibbs energy is zero because the reference states for the pure elements are HCP for Re
and BCC for W at the current T .
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 1000 K, now the CHI phase (χ), is stable.
The two green dots on the Gibbs energy curves for the CHI phase corresponds to the two dots
on the solubility curves in the phase diagram, representing the compositions with a common
tangent with the HCP and BCC phases respectively.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 1500 K, the solubility range of the CHI phase is larger and also the
solubility of Re in BCC.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 2000 K.

Asta-HumeRothery 27



Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 2600 K again. The SIGMA (σ) and A15 phases are also stable at this T .
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 3000 K. HCP, CHI, SIGMA and BCC are stable. A15 is no longer stable
but one can see it is very close to be stable from the Gibbs energy curves in the diagram to
the right.
There is no liquid because there are no DFT data for the liquid phase.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Here are the curves at 3500 K, no change of the stable set of phases.
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Phase diagrams and Gibbs energy curves

This is a binary phase diagram for Re-W calculated using CEF with endmember energies
generated by DFT.
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Finally the curves at 4000 K.

My intention is to show that there are a lot of Gibbs energy curves (and subsequent model
parameters) behind even a few solubility lines in the stable phase diagram. It is not trivial to
adjust the large number of model parameters for these phases to change the set of stable
phases at varying T to obtain the correct phase diagram.
We cannot ignore the Gibbs energy curves for the metastable phases in binary systems, adding
a small amount of a third element may make it stable ...
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Phase diagram mapping

Using Gibbs energy curves to explain the calculation of phase diagrams can be instructive but
when calculating a phase diagram there is no need to calculate the whole Gibbs energy surface
for each phase to find the points of tangency shown in the phase diagram.
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Phase diagram mapping

The lines in a phase diagram specifies where a phase is on its limit of stability and the
equilibrium algorithm allows a condition that a phase must be fix with zero amount.
The algorithm to calculate a phase diagram is to follow a stability line of a particular phase
until we reach the axis limits or a node point when the set of stable phases change.
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Phase diagram mapping

The lines in a phase diagram specifies where a phase is on its limit of stability and the
equilibrium algorithm allows a condition that a phase must be fix with zero amount.
The algorithm to calculate a phase diagram is to follow a stability line of a particular phase
until we reach the axis limits or a node point when the set of stable phases change.
At the node an equilibrium with two fix phases is calculated and new lines exiting from the
node are generated. The number of lines exiting from a node point can vary in particular if the
node point represent an invariant equilibrium.
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Phase diagram mapping

The lines in a phase diagram specifies where a phase is on its limit of stability and the
equilibrium algorithm allows a condition that a phase must be fix with zero amount.
The algorithm to calculate a phase diagram is to follow a stability line of a particular phase
until we reach the axis limits or a node point when the set of stable phases change.
At the node an equilibrium with two fix phases is calculated and new lines exiting from the
node are generated. The number of lines exiting from a node point can vary in particular if the
node point represent an invariant equilibrium.
This algorithm works for binary, ternary and multi-component systems with arbitrary number
of stable phases. Unless all conditions (except one) are potentials, or a stable phase has fixed
composition, the number of stable phases changes by one when crossing a line in the diagram
(again with one exception: not if the line represent an invariant).
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Phase diagram mapping

The lines in a phase diagram specifies where a phase is on its limit of stability and the
equilibrium algorithm allows a condition that a phase must be fix with zero amount.
The algorithm to calculate a phase diagram is to follow a stability line of a particular phase
until we reach the axis limits or a node point when the set of stable phases change.
At the node an equilibrium with two fix phases is calculated and new lines exiting from the
node are generated. The number of lines exiting from a node point can vary in particular if the
node point represent an invariant equilibrium.
This algorithm works for binary, ternary and multi-component systems with arbitrary number
of stable phases. Unless all conditions (except one) are potentials, or a stable phase has fixed
composition, the number of stable phases changes by one when crossing a line in the diagram
(again with one exception: not if the line represent an invariant).
In OC all results for each equilibria calculated during the mapping are saved and for the
plotting any calculated property can be selected on the plot axis. In this way we can plot
either the T or HM(∗) vs carbon content for the metastable Fe-C system.
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Kinetic data and simulations

◮ Application software interface and iso-C interface

◮ OpenCalphad Application Software Interface, OCASI

◮ Mobilities, diffusivities and Darken stability matrix

◮ Example of a simulation
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OCASI software interface

The OC software interface follows the TQ standard proposed in 1994 and which is used by
Thermo-Calc and ChemApp (in slightly different forms). The OC variant is called OCASI.

◮ The OC software can be used by applications written in Fortran, C++, Python etc using
the iso-C standard.
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OCASI software interface

The OC software interface follows the TQ standard proposed in 1994 and which is used by
Thermo-Calc and ChemApp (in slightly different forms). The OC variant is called OCASI.

◮ The OC software can be used by applications written in Fortran, C++, Python etc using
the iso-C standard.

◮ The application program can:
◮ read from a database,
◮ set conditions in a very flexible way,
◮ calculate several equilibria in parallel using the OpenMP library,
◮ retrieve calculated results.
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OCASI software interface

The OC software interface follows the TQ standard proposed in 1994 and which is used by
Thermo-Calc and ChemApp (in slightly different forms). The OC variant is called OCASI.

◮ The OC software can be used by applications written in Fortran, C++, Python etc using
the iso-C standard.

◮ The application program can:
◮ read from a database,
◮ set conditions in a very flexible way,
◮ calculate several equilibria in parallel using the OpenMP library,
◮ retrieve calculated results.

◮ A number of applications programs are provided with the source code.
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Kinetic data and simulations

To simulate phase transformations we need also other data than thermodynamic, for example
mobilities, surface energies and thermal conductivity.
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Kinetic data and simulations

To simulate phase transformations we need also other data than thermodynamic, for example
mobilities, surface energies and thermal conductivity.
Within OC it is possible to include these data in the same way as thermodynamic data. For
example the mobility of a Al in the FCC phase has a symbol MQ&AL(FCC) and can be
modeled as a function of T, P and composition in the same way as the Gibbs energy.
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Kinetic data and simulations

To simulate phase transformations we need also other data than thermodynamic, for example
mobilities, surface energies and thermal conductivity.
Within OC it is possible to include these data in the same way as thermodynamic data. For
example the mobility of a Al in the FCC phase has a symbol MQ&AL(FCC) and can be
modeled as a function of T, P and composition in the same way as the Gibbs energy.
To convert mobilities to diffusion coefficients we need the Darken stability matrix which is the
determinant of all derivatives of the partial Gibbs energies (chemical potentials) with respect
to the components. For a binary system the determinant of the stability matrix is simply:

det(M) =
∂Gα

A

∂xA

∂Gα
B

∂xB
−

∂Gα
A

∂xB

∂Gα
B

∂xA
(18)
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Multi-component Darken stability matrix and 2nd derivatives

In a multi-component system the partial derivatives are slightly more complicated

∂Gα
A

∂xB
=

1

N





(

∂2Gα
M

∂xA∂xB

)

T ,P,xC 6=A,B

−

∑

C

xC





(

∂2Gα
M

∂xA∂xC

)

T ,P,xD 6=A,C

+

(

∂2Gα
M

∂xB∂xC

)

T ,P,xD 6=B,C



+

∑

C

∑

D

xCxD

(

∂2Gα
M

∂xC∂xD

)

T ,P,xE6=C,D



 (19)

where the summation over C and D are for all components.
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Multi-component Darken stability matrix and 2nd derivatives

In a multi-component system the partial derivatives are slightly more complicated
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T ,P,xE6=C,D



 (19)

where the summation over C and D are for all components.
It is quite interesting that this is symmetric:

∂Gα
A

∂xB
=

∂Gα
B

∂xA
(20)

In the OC software all second derivatives of the Gibbs energy are calculated analytically which
makes it very fast to obtain this.
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OCASI example

An aluminium company in France has converted a software they used for simulating
solidification and homogenization to use OCASI.
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OCASI example

An aluminium company in France has converted a software they used for simulating
solidification and homogenization to use OCASI.

For this alloy
Si Fe Cu Mn Mg Zn Ti Zr Al
0.06 0.06 1.8 0.1 2.3 8.1 0.06 0.06 rest

using a simulation model including back diffusion and with their own software it took about
3.5 days to simulate the solidification and several subsequent homogenization steps.
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OCASI example

An aluminium company in France has converted a software they used for simulating
solidification and homogenization to use OCASI.

For this alloy
Si Fe Cu Mn Mg Zn Ti Zr Al
0.06 0.06 1.8 0.1 2.3 8.1 0.06 0.06 rest

using a simulation model including back diffusion and with their own software it took about
3.5 days to simulate the solidification and several subsequent homogenization steps.

The left hand figure show the concentration profiles across a dendrite after solidification, the
right the heat evolved during homogenization.

Implementing OCASI for this simulation and running sequentially it required about 2 days.
Running it in parallel with 12 CPU (24 treads) the simulation time was less than 4 hours, a
reduction by 12.
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Assessments - database development

◮ Assessment of binary and ternary systems

◮ Extrapolation from Cr-Mo to a six component duplex stainless steel

◮ From assessments to databases
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Assessing a binary or ternary system

Published assessments are the base of thermodynamic databases and are normally performed
by a master or PhD student, hopefully guided by an experienced postdoc or professor. It is
very challenging to select models for the phases and to understand how the parameters in the
models can be adjusted to the available data.

Asta-HumeRothery 35



Assessing a binary or ternary system

Published assessments are the base of thermodynamic databases and are normally performed
by a master or PhD student, hopefully guided by an experienced postdoc or professor. It is
very challenging to select models for the phases and to understand how the parameters in the
models can be adjusted to the available data.
There is no regular training in this, and just one textbook
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Assessing a binary or ternary system

Published assessments are the base of thermodynamic databases and are normally performed
by a master or PhD student, hopefully guided by an experienced postdoc or professor. It is
very challenging to select models for the phases and to understand how the parameters in the
models can be adjusted to the available data.
In France we have arranged summer schools a few times to explain how to include all the
different types of data: phase diagram, enthalpy of mixing and formation, activities and
chemical potentials, heat capacities, DFT data etc. We are grateful that Mark has been
teaching about DFT calculations at some of these occasions.
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Assessing a binary or ternary system

Published assessments are the base of thermodynamic databases and are normally performed
by a master or PhD student, hopefully guided by an experienced postdoc or professor. It is
very challenging to select models for the phases and to understand how the parameters in the
models can be adjusted to the available data.

A recent trend is to make assessment using mainly endmember data calculated by DFT but
the uncertainties in such calculations is too large to ignore other data, in particular from phase
diagrams.
It is important to use correct crystallographic models and not the earlier simplified models
with reduced number of sublattices used in many of the current commercial databases.
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Assessing a binary or ternary system

Published assessments are the base of thermodynamic databases and are normally performed
by a master or PhD student, hopefully guided by an experienced postdoc or professor. It is
very challenging to select models for the phases and to understand how the parameters in the
models can be adjusted to the available data.

A recent trend is to make assessment using mainly endmember data calculated by DFT but
the uncertainties in such calculations is too large to ignore other data, in particular from phase
diagrams.
It is important to use correct crystallographic models and not the earlier simplified models
with reduced number of sublattices used in many of the current commercial databases.

Developing databases is difficult, I have an example how a problem reproducing a well
established experimental information in a multi-component system could be traced back to a
bad estimate of a model parameter in a binary system.

Asta-HumeRothery 35



Extrapolation from a binary to SAF2507

Developing a steel database we tried to calculate equilibria in the SAF 2507 duplex stainless
steel with Fe-Cr-Ni-Mo-N. But we found that the FCC phase was too stable and we could not
correct this using ternary or higher order parameters.
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Extrapolation from a binary to SAF2507

Developing a steel database we tried to calculate equilibria in the SAF 2507 duplex stainless
steel with Fe-Cr-Ni-Mo-N. But we found that the FCC phase was too stable and we could not
correct this using ternary or higher order parameters.
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The dashed square represent the temperature “window” for heat treatment to obtain the
duplex structure.

Varying all kinds of ternary or quaternary parameters did not work without creating significant
changes to the fit to other data.

Asta-HumeRothery 36



Extrapolation from a binary to SAF2507

Finally we looked at the binaries and realized that in the Cr-Mo system the FCC was modeled
as ideal although there is a positive interaction and miscibility gap in the bcc phase.
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Extrapolation from a binary to SAF2507

Finally we looked at the binaries and realized that in the Cr-Mo system the FCC was modeled
as ideal although there is a positive interaction and miscibility gap in the bcc phase.
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In the right had figure the Gibbs energy curves for BCC, HCP, FCC and liquid at 1000 K are
plotted. There is a miscibility gap in the BCC but FCC and HCP have ideal mixing because
they are not stable in the binary system.
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Extrapolation from a binary to SAF2507

The ideal mixing in FCC does not cause any problem in the binary and in the ternary
Cr-Mo-Ni where the FCC phase is stable with considerable solubility of Cr and Mo. The
ternary solubility can be fitted with a small ternary interaction parameter but in higher higher
order systems with low Ni content the ideal binary FCC in Cr-Mo extrapolates badly.
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Extrapolation from a binary to SAF2507

Introducing a positive binary interaction in FCC Cr-Mo, similar to that in BCC can be
balanced by a more negative ternary interaction in Cr-Fe-Ni to fit the large ternary solubility.
And the positive binary interaction in the FCC binary Cr-Mo gives better results in the
Cr-Fe-Mo-N-Ni system.
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Conclusion: parameters for simple structures like BCC, FCC, HCP, should always be assessed
or estimated in binary systems even if they are not stable.
Those phases which are not stable in the system should have parameters similar to the stable
phase.
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Including data from DFT and MD

The possibilities to calculate energies of formation by DFT has simplified many assessments as
most of the endmembers in a phase are metastable and not possible to measure experimentally.
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capacities, because such calculations often ignore factors that cannot easily be included.
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Including data from DFT and MD

The possibilities to calculate energies of formation by DFT has simplified many assessments as
most of the endmembers in a phase are metastable and not possible to measure experimentally.
I am more skeptical to results from SQS and also to the calculation of phonons and heat
capacities, because such calculations often ignore factors that cannot easily be included.
The DFT data are only one input to the assessment procedure, and I am very skeptical to
assessments done more or less automatically mainly based on DFT data.
Stating this there are certainly many ways the software available for assessments can be
improved and provide help to inexperienced users and students. Unfortunately this is a low
priority topic for most commercial companies providing thermodynamic software.

Modeling the liquid is still a big challenge. In my opinion there is no good general model for
the liquid and I am still searching for a model which can describe water, molten salts and
metallic liquids with a single Gibbs energy expression.
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From assessments to databases

Development of thermodynamic databases is a major activity of the commercial vendors of
thermodynamic software.
Most databases are based on published assessments of binary and ternary systems. But it is
not possible to create a database by just adding assessments from published papers.
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Development of thermodynamic databases is a major activity of the commercial vendors of
thermodynamic software.
Most databases are based on published assessments of binary and ternary systems. But it is
not possible to create a database by just adding assessments from published papers.
The manager of a multi-component database must ofen adjust the published assessments as
the models are not always compatible with those used in the database. He or she must also
estimate endmember values and sometimes excess parameters for phases that are not present
in the database when a new component is added which can dissolve in an existing phase. This
require thorough testing as well as experience and skill.
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From assessments to databases

Development of thermodynamic databases is a major activity of the commercial vendors of
thermodynamic software.
Most databases are based on published assessments of binary and ternary systems. But it is
not possible to create a database by just adding assessments from published papers.
The manager of a multi-component database must ofen adjust the published assessments as
the models are not always compatible with those used in the database. He or she must also
estimate endmember values and sometimes excess parameters for phases that are not present
in the database when a new component is added which can dissolve in an existing phase. This
require thorough testing as well as experience and skill.

Commercial vendors of thermodynamic software have invested a lot of money and efforts in
the databases they market but for that reason they are not always interested to develop new
models, unless they are small modifications of the models they already use.
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From assessments to databases

When extrapolations work we have a happy database manager
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From assessments to databases

When extrapolations work we have a happy database manager

But frequently there are problems merging assessments making the database manager worried.
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Summary

OpenCalphad is a free software and can be downloaded, modified, compiled and run on any
computer that has a compiler for the Fortran 2008 standard. It has a modular structure for
models, calculations, mapping, graphics and assessments.
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OpenCalphad is a free software and can be downloaded, modified, compiled and run on any
computer that has a compiler for the Fortran 2008 standard. It has a modular structure for
models, calculations, mapping, graphics and assessments.
OC has an iso-C interface so it can be used in other software written in C, C++, python etc
for simulations of phase transformations.
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OpenCalphad is a free software and can be downloaded, modified, compiled and run on any
computer that has a compiler for the Fortran 2008 standard. It has a modular structure for
models, calculations, mapping, graphics and assessments.
OC has an iso-C interface so it can be used in other software written in C, C++, python etc
for simulations of phase transformations.
The user interface is command line oriented and GNUPLOT is used for the graphics. Anyone
who prefers a GUI is welcome to develop it.

Anyone interested in developing thermodynamic models or algorithms for equilibrium
calculations can use OC as a platform to test his or hers ideas in a realistic environment. It is
not no longer a exclusive privilege for those employed by companies marketing thermodynamic
software and databases (or someone who can spend 5 years developing the necessary utilities).
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Summary

OpenCalphad is a free software and can be downloaded, modified, compiled and run on any
computer that has a compiler for the Fortran 2008 standard. It has a modular structure for
models, calculations, mapping, graphics and assessments.
OC has an iso-C interface so it can be used in other software written in C, C++, python etc
for simulations of phase transformations.
The user interface is command line oriented and GNUPLOT is used for the graphics. Anyone
who prefers a GUI is welcome to develop it.

Anyone interested in developing thermodynamic models or algorithms for equilibrium
calculations can use OC as a platform to test his or hers ideas in a realistic environment. It is
not no longer a exclusive privilege for those employed by companies marketing thermodynamic
software and databases (or someone who can spend 5 years developing the necessary utilities).

The development of new thermodynamic models is very important and there is a risk that the
commercial companies loose interest in developing new models as they have invested
considerable efforts and money in their current databases which will be very costly to modify.
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Current status

What is working:

◮ CEF and ionic liquid model

◮ Reading (unencrypted) TDB files and entering data interactively

◮ Command oriented user interface with macro facilities

◮ Setting many different types of conditions

◮ Calculating multi-component equilibria

◮ STEP calculation of property diagram

◮ MAP of multi-component phase diagram (fragile)

◮ PLOT using free GNUPLOT software

◮ The software interface, OCASI, has the basic routines

◮ Parallel calculation of many multi-component equilibria using OpenMP

◮ Assessment of model parameters
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Current status

What is still in the pipeline:

◮ More models are waiting to be implemented

◮ Assessment works but there are many utilities missing

◮ OCASI has to be restructured.

◮ Improving convergence and stability of calculations needed

◮ More step and map facilities

◮ Improved help facilities

◮ Complete the documentation
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Current status

What is still in the pipeline:

◮ More models are waiting to be implemented

◮ Assessment works but there are many utilities missing

◮ OCASI has to be restructured.

◮ Improving convergence and stability of calculations needed

◮ More step and map facilities

◮ Improved help facilities

◮ Complete the documentation

The best of all: Everyone interested can participate.
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Download and references

OC can be downloaded from http://www.opencalphad.org
or a development version from http://www.github.org/sundmanbo/opencalphad

The installation requires that you compile the program using GNU Fortran 7.2 or similar.
There are some advice and a few 100 pages of documentation but if you are not familiar with
software development please ask a local guru for help. To plot you must also install
GNUPLOT which is free.

Asta-HumeRothery 44



Download and references

OC can be downloaded from http://www.opencalphad.org
or a development version from http://www.github.org/sundmanbo/opencalphad

The installation requires that you compile the program using GNU Fortran 7.2 or similar.
There are some advice and a few 100 pages of documentation but if you are not familiar with
software development please ask a local guru for help. To plot you must also install
GNUPLOT which is free.

◮ Bo Sundman, Ursula R Kattner, Mauro Palumbo and Suzana G Fries, OpenCalphad - a

free thermodynamic software, Integr Materials and Manufact Innovation, 4:1 (2015)
◮ Bo Sundman, Xiao-Gang Lu and Hiroshi Ohtani, The implementation of an algorithm to

calculate thermodynamic equilibria for multi-component systems with non-ideal phases in

a free software, in Comp Mat Sci, 101 (2015) 127-137
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